Visar inlägg med etikett Hjärnan. Visa alla inlägg
Visar inlägg med etikett Hjärnan. Visa alla inlägg

lördag, juni 26, 2021

Medvetandet – The Consciousness

När jag blir nyfiken på hur min hjärna fungerar (vilket mina vänner ständigt också verkar fundera över), googlar jag och hittar miljoner bokstäver staplade till svårbegripliga meningar men när jag googlar på Medvetande – Consciousness, blir det spännande.

Hjärnans primära funktion är att koordinera olika nervsystem och till detta finns kommunikationssystem som en datorkonstruktör bara kan drömma om.

Medvetandet omsätts till tankar i hjärnan men hur får hjärnan denna information?

Kroppen med sina muskler, ben, blod och allt annat jox har med genetik att göra. Det är arvmassa som styr hur kroppen byggs upp men medvetandet har inga rötter i genetiken.

Medvetandet är vetenskapens olösbara mysterium!

Medvetandet ärvs inte; det bara är.

Scientific American försöker.

What Is Consciousness?
Scientists are beginning to unravel a mystery that has long vexed philosophers

By Christof Koch on June 1, 2018

Consciousness is everything you experience. It is the tune stuck in your head, the sweetness of chocolate mousse, the throbbing pain of a toothache, the fierce love for your child and the bitter knowledge that eventually all feelings will end.

The origin and nature of these experiences, sometimes referred to as qualia, have been a mystery from the earliest days of antiquity right up to the present. Many modern analytic philosophers of mind, most prominently perhaps Daniel Dennett of Tufts University, find the existence of consciousness such an intolerable affront to what they believe should be a meaningless universe of matter and the void that they declare it to be an illusion. That is, they either deny that qualia exist or argue that they can never be meaningfully studied by science.

If that assertion was true, this essay would be very short. All I would need to explain is why you, I and most everybody else is so convinced that we have feelings at all. If I have a tooth abscess, however, a sophisticated argument to persuade me that my pain is delusional will not lessen its torment one iota. As I have very little sympathy for this desperate solution to the mind-body problem, I shall move on.

The majority of scholars accept consciousness as a given and seek to understand its relationship to the objective world described by science. More than a quarter of a century ago Francis Crick and I decided to set aside philosophical discussions on consciousness (which have engaged scholars since at least the time of Aristotle) and instead search for its physical footprints. What is it about a highly excitable piece of brain matter that gives rise to consciousness? Once we can understand that, we hope to get closer to solving the more fundamental problem.

We seek, in particular, the neuronal correlates of consciousness (NCC), defined as the minimal neuronal mechanisms jointly sufficient for any specific conscious experience. What must happen in your brain for you to experience a toothache, for example? Must some nerve cells vibrate at some magical frequency? Do some special “consciousness neurons” have to be activated? In which brain regions would these cells be located?

When defining the NCC, the qualifier “minimal” is important. The brain as a whole can be considered an NCC, after all: it generates experience, day in and day out. But the seat of consciousness can be further ring-fenced. Take the spinal cord, a foot-and-a-half-long flexible tube of nervous tissue inside the backbone with about a billion nerve cells. If the spinal cord is completely severed by trauma to the neck region, victims are paralyzed in legs, arms and torso, unable to control their bowel and bladder, and without bodily sensations. Yet these tetraplegics continue to experience life in all its variety—they see, hear, smell, feel emotions and remember as much as before the incident that radically changed their life.

Or consider the cerebellum, the “little brain” underneath the back of the brain. One of the most ancient brain circuits in evolutionary terms, it is involved in motor control, posture and gait and in the fluid execution of complex sequences of motor movements. Playing the piano, typing, ice dancing or climbing a rock wall—all these activities involve the cerebellum. It has the brain's most glorious neurons, called Purkinje cells, which possess tendrils that spread like a sea fan coral and harbor complex electrical dynamics. It also has by far the most neurons, about 69 billion (most of which are the star-shaped cerebellar granule cells), four times more than in the rest of the brain combined.

What happens to consciousness if parts of the cerebellum are lost to a stroke or to the surgeon's knife? Very little! Cerebellar patients complain of several deficits, such as the loss of fluidity of piano playing or keyboard typing but never of losing any aspect of their consciousness. They hear, see and feel fine, retain a sense of self, recall past events and continue to project themselves into the future. Even being born without a cerebellum does not appreciably affect the conscious experience of the individual.

All of the vast cerebellar apparatus is irrelevant to subjective experience. Why? Important hints can be found within its circuitry, which is exceedingly uniform and parallel (just as batteries may be connected in parallel). The cerebellum is almost exclusively a feed-forward circuit: one set of neurons feeds the next, which in turn influences a third set. There are no complex feedback loops that reverberate with electrical activity passing back and forth. (Given the time needed for a conscious perception to develop, most theoreticians infer that it must involve feedback loops within the brain's cavernous circuitry.) Moreover, the cerebellum is functionally divided into hundreds or more independent computational modules. Each one operates in parallel, with distinct, nonoverlapping inputs and output, controlling movements of different motor or cognitive systems. They scarcely interact—another feature held indispensable for consciousness.

One important lesson from the spinal cord and the cerebellum is that the genie of consciousness does not just appear when any neural tissue is excited. More is needed. This additional factor is found in the gray matter making up the celebrated cerebral cortex, the outer surface of the brain. It is a laminated sheet of intricately interconnected nervous tissue, the size and width of a 14-inch pizza. Two of these sheets, highly folded, along with their hundreds of millions of wires—the white matter—are crammed into the skull. All available evidence implicates neocortical tissue in generating feelings.

We can narrow down the seat of consciousness even further. Take, for example, experiments in which different stimuli are presented to the right and the left eyes. Suppose a picture of Donald Trump is visible only to your left eye and one of Hillary Clinton only to your right eye. We might imagine that you would see some weird superposition of Trump and Clinton. In reality, you will see Trump for a few seconds, after which he will disappear and Clinton will appear, after which she will go away and Trump will reappear. The two images will alternate in a never-ending dance because of what neuroscientists call binocular rivalry. Because your brain is getting an ambiguous input, it cannot decide: Is it Trump, or is it Clinton?

If, at the same time, you are lying inside a magnetic scanner that registers brain activity, experimenters will find that a broad set of cortical regions, collectively known as the posterior hot zone, is active. These are the parietal, occipital and temporal regions in the posterior part of cortex [see graphic below] that play the most significant role in tracking what we see. Curiously, the primary visual cortex that receives and passes on the information streaming up from the eyes does not signal what the subject sees. A similar hierarchy of labor appears to be true of sound and touch: primary auditory and primary somatosensory cortices do not directly contribute to the content of auditory or somatosensory experience. Instead it is the next stages of processing—in the posterior hot zone—that give rise to conscious perception, including the image of Trump or Clinton.

More illuminating are two clinical sources of causal evidence: electrical stimulation of cortical tissue and the study of patients following the loss of specific regions caused by injury or disease. Before removing a brain tumor or the locus of a patient's epileptic seizures, for example, neurosurgeons map the functions of nearby cortical tissue by directly stimulating it with electrodes. Stimulating the posterior hot zone can trigger a diversity of distinct sensations and feelings. These could be flashes of light, geometric shapes, distortions of faces, auditory or visual hallucinations, a feeling of familiarity or unreality, the urge to move a specific limb, and so on. Stimulating the front of the cortex is a different matter: by and large, it elicits no direct experience.

A second source of insights are neurological patients from the first half of the 20th century. Surgeons sometimes had to excise a large belt of prefrontal cortex to remove tumors or to ameliorate epileptic seizures. What is remarkable is how unremarkable these patients appeared. The loss of a portion of the frontal lobe did have certain deleterious effects: the patients developed a lack of inhibition of inappropriate emotions or actions, motor deficits, or uncontrollable repetition of specific action or words. Following the operation, however, their personality and IQ improved, and they went on to live for many more years, with no evidence that the drastic removal of frontal tissue significantly affected their conscious experience. Conversely, removal of even small regions of the posterior cortex, where the hot zone resides, can lead to a loss of entire classes of conscious content: patients are unable to recognize faces or to see motion, color or space.

So it appears that the sights, sounds and other sensations of life as we experience it are generated by regions within the posterior cortex. As far as we can tell, almost all conscious experiences have their origin there. What is the crucial difference between these posterior regions and much of the prefrontal cortex, which does not directly contribute to subjective content? The truth is that we do not know. Even so—and excitingly—a recent finding indicates that neuroscientists may be getting closer.

THE CONSCIOUSNESS METER
An unmet clinical need exists for a device that reliably detects the presence or absence of consciousness in impaired or incapacitated individuals. During surgery, for example, patients are anesthetized to keep them immobile and their blood pressure stable and to eliminate pain and traumatic memories. Unfortunately, this goal is not always met: every year hundreds of patients have some awareness under anesthesia.

Another category of patients, who have severe brain injury because of accidents, infections or extreme intoxication, may live for years without being able to speak or respond to verbal requests. Establishing that they experience life is a grave challenge to the clinical arts. Think of an astronaut adrift in space, listening to mission control's attempts to contact him. His damaged radio does not relay his voice, and he appears lost to the world. This is the forlorn situation of patients whose damaged brain will not let them communicate to the world—an extreme form of solitary confinement.

Credit: Mesa Schumacher

In the early 2000s Giulio Tononi of the University of Wisconsin–Madison and Marcello Massimini, now at the University of Milan in Italy, pioneered a technique, called zap and zip, to probe whether someone is conscious or not. The scientists held a sheathed coil of wire against the scalp and “zapped” it—sent an intense pulse of magnetic energy into the skull—inducing a brief electric current in the neurons underneath. The perturbation, in turn, excited and inhibited the neurons' partner cells in connected regions, in a chain reverberating across the cortex, until the activity died out. A network of electroencephalogram (EEG) sensors, positioned outside the skull, recorded these electrical signals. As they unfolded over time, these traces, each corresponding to a specific location in the brain below the skull, yielded a movie.

These unfolding records neither sketched a stereotypical pattern, nor were they completely random. Remarkably, the more predictable these waxing and waning rhythms were, the more likely the brain was unconscious. The researchers quantified this intuition by compressing the data in the movie with an algorithm commonly used to “zip” computer files. The zipping yielded an estimate of the complexity of the brain's response. Volunteers who were awake turned out have a “perturbational complexity index” of between 0.31 and 0.70, dropping to below 0.31 when deeply asleep or anesthetized. Massimini and Tononi tested this zap-and-zip measure on 48 patients who were brain-injured but responsive and awake, finding that in every case, the method confirmed the behavioral evidence for consciousness.

The team then applied zap and zip to 81 patients who were minimally conscious or in a vegetative state. For the former group, which showed some signs of nonreflexive behavior, the method correctly found 36 out of 38 patients to be conscious. It misdiagnosed two patients as unconscious. Of the 43 vegetative-state patients in which all bedside attempts to establish communication failed, 34 were labeled as unconscious, but nine were not. Their brains responded similarly to those of conscious controls—implying that they were conscious yet unable to communicate with their loved ones.

Ongoing studies seek to standardize and improve zap and zip for neurological patients and to extend it to psychiatric and pediatric patients. Sooner or later scientists will discover the specific set of neural mechanisms that give rise to any one experience. Although these findings will have important clinical implications and may give succor to families and friends, they will not answer some fundamental questions: Why these neurons and not those? Why this particular frequency and not that? Indeed, the abiding mystery is how and why any highly organized piece of active matter gives rise to conscious sensation. After all, the brain is like any other organ, subject to the same physical laws as the heart or the liver. What makes it different? What is it about the biophysics of a chunk of highly excitable brain matter that turns gray goo into the glorious surround sound and Technicolor that is the fabric of everyday experience?

Ultimately what we need is a satisfying scientific theory of consciousness that predicts under which conditions any particular physical system—whether it is a complex circuit of neurons or silicon transistors—has experiences. Furthermore, why does the quality of these experiences differ? Why does a clear blue sky feel so different from the screech of a badly tuned violin? Do these differences in sensation have a function, and if so, what is it? Such a theory will allow us to infer which systems will experience anything. Absent a theory with testable predictions, any speculation about machine consciousness is based solely on our intuition, which the history of science has shown is not a reliable guide.

Fierce debates have arisen around the two most popular theories of consciousness. One is the global neuronal workspace (GNW) by psychologist Bernard J. Baars and neuroscientists Stanislas Dehaene and Jean-Pierre Changeux. The theory begins with the observation that when you are conscious of something, many different parts of your brain have access to that information. If, on the other hand, you act unconsciously, that information is localized to the specific sensory motor system involved. For example, when you type fast, you do so automatically. Asked how you do it, you would not know: you have little conscious access to that information, which also happens to be localized to the brain circuits linking your eyes to rapid finger movements.

TOWARD A FUNDAMENTAL THEORY
GNW argues that consciousness arises from a particular type of information processing—familiar from the early days of artificial intelligence, when specialized programs would access a small, shared repository of information. Whatever data were written onto this “blackboard” became available to a host of subsidiary processes: working memory, language, the planning module, and so on. According to GNW, consciousness emerges when incoming sensory information, inscribed onto such a blackboard, is broadcast globally to multiple cognitive systems—which process these data to speak, store or call up a memory or execute an action.

Because the blackboard has limited space, we can only be aware of a little information at any given instant. The network of neurons that broadcast these messages is hypothesized to be located in the frontal and parietal lobes. Once these sparse data are broadcast on this network and are globally available, the information becomes conscious. That is, the subject becomes aware of it. Whereas current machines do not yet rise to this level of cognitive sophistication, this is only a question of time. GNW posits that computers of the future will be conscious.

Integrated information theory (IIT), developed by Tononi and his collaborators, including me, has a very different starting point: experience itself. Each experience has certain essential properties. It is intrinsic, existing only for the subject as its “owner”; it is structured (a yellow cab braking while a brown dog crosses the street); and it is specific—distinct from any other conscious experience, such as a particular frame in a movie. Furthermore, it is unified and definite. When you sit on a park bench on a warm, sunny day, watching children play, the different parts of the experience—the breeze playing in your hair or the joy of hearing your toddler laugh—cannot be separated into parts without the experience ceasing to be what it is.

Tononi postulates that any complex and interconnected mechanism whose structure encodes a set of cause-and-effect relationships will have these properties—and so will have some level of consciousness. It will feel like something from the inside. But if, like the cerebellum, the mechanism lacks integration and complexity, it will not be aware of anything. As IIT states it, consciousness is intrinsic causal power associated with complex mechanisms such as the human brain.

IIT theory also derives, from the complexity of the underlying interconnected structure, a single nonnegative number Φ (pronounced “fy”) that quantifies this consciousness. If Φ is zero, the system does not feel like anything to be itself. Conversely, the bigger this number, the more intrinsic causal power the system possesses and the more conscious it is. The brain, which has enormous and highly specific connectivity, possesses very high Φ, which implies a high level of consciousness. IIT explains a number of observations, such as why the cerebellum does not contribute to consciousness and why the zap-and-zip meter works. (The quantity the meter measures is a very crude approximation of Φ.)

IIT also predicts that a sophisticated simulation of a human brain running on a digital computer cannot be conscious—even if it can speak in a manner indistinguishable from a human being. Just as simulating the massive gravitational attraction of a black hole does not actually deform spacetime around the computer implementing the astrophysical code, programming for consciousness will never create a conscious computer. Consciousness cannot be computed: it must be built into the structure of the system.

Two challenges lie ahead. One is to use the increasingly refined tools at our disposal to observe and probe the vast coalitions of highly heterogeneous neurons making up the brain to further delineate the neuronal footprints of consciousness. This effort will take decades, given the byzantine complexity of the central nervous system. The other is to verify or falsify the two, currently dominant, theories. Or, perhaps, to construct a better theory out of fragments of these two that will satisfactorily explain the central puzzle of our existence: how a three-pound organ with the consistency of tofu exudes the feeling of life.

This article is part of a special report, “The Biggest Questions in Science,” sponsored by The Kavli Prize. It was produced independently by Scientific American and Nature editors, who have sole responsibility for all the editorial content.






På varje arbetsplats borde det finnas tre akuthjälpskåp.

Ett med en hjärtstartare samt det vanliga med gasbindor, sårrengöring och plåster och ett med en tvåkilos slägga i.



lördag, maj 01, 2021

Hjärnan

Jag har minst två egenheter som jag kanske borde försöka kontrollera men avstår eftersom jag inser att förändrar jag en del av min personlighet, påverkar det hela mig så jag fortsätter, dock medveten om mina brister som en av mina närmaste unga kvinnor ofta bråkar med mig för.

Mina tankar resulterar många gånger i uttalade ord utan att min sociala kompetens hinner analysera konsekvenserna.

Samma funktionssystem gör att armar, händer och fingrar agerar utan konskvensanalys. Allt går väldigt fort och ett exempel är det som händer nu.

Medan jag skriver ligger planeringen lite före så att jag rätt som det är skriver ett ord alldeles för tidigt.

När jag ställer ifrån mig en kaffekopp, dras armen undan innan fingrarna hinner lossa greppet. Det har resulterat i många nyanskaffningar av tangentbord och många fläckar på många golv.

Min hjärnas turboaggregat är av högtryckstyp.


Prefrontala cortex, prefrontalkortex eller prefrontala barken, är den främre delen av hjärnans pannlob, och ligger framför premotorkortex och motorkortex. Det omfattar Brodmannareorna samt delar av flera andra areor. Prefrontala cortex har kopplingar till alla sinnessystem samt subkortikala strukturer som amygdala och hypotalamus.

Prefrontala cortex hör ihop med förmågor som att avstå från att följa stimuli, samt komplexa kognitiva processer som att planera rörelser och handlingar. I detta område finns förmågan att fatta beslut och att anpassa sig till olika sociala sammanhang. I prefrontala cortex bearbetas information utifrån individens erfarenheter och långsiktiga mål. Även empati hör till detta område.

Prefrontala cortex samverkar med premotorkortex och motorkortex när det gäller rörelser. Prefrontala cortex kontrollerar kognitiva processer så att passande rörelser väljs i rätt tid och på rätt plats. Detta val kan kontrolleras genom internaliserad information i arbetsminnet, genom yttre information som vid associativ inlärning eller som svar på både känslomässiga och sociala sammanhang.

Amygdala (uttalas /aˈmʏgdala/; latin corpus amygdaloideum, av grekiska ἀμυγδαλή, amygdalē, "mandel", "tonsill", svenska mandelkärnan) är en bilateral struktur i hjärnan som utgör en del av limbiska systemet, belägen djupt i hjärnan, nära mediala tinningloben. Amygdala tros ha en viktig funktion i hjärnans emotionella nätverk och spelar stor roll vid uppkomsten av såväl negativa som positiva känslor.

Hypotalamus, hypothalamus, är en region i hjärnan, belägen under talamus på undersidan av mellanhjärnan. Den sköter kontrollmekanismer för bland annat blodtryck, kroppstemperatur, ämnesomsättning och sömn. Hypotalamus kopplar hjärnan till det endokrina systemet genom att avge hormoner via ett portådersystem till främre hypofysen. Hypotalamus ansvarar för aktiviteter i det autonoma nervsystemet som exempelvis vissa metaboliska processer, vilket sker genom att hormoner utsöndras som i sin tur stimulerar eller hämmar utsöndringen av hypofyshormoner. Hormoner som påverkar adenohypofysen kallas för hypofysiotropa hormon. Till exempel gonadotropinfrisättande hormon som reglerar hypofysens sekretion av follikelstimulerande hormon och luteiniserande hormon. Tillverkar också hormonerna vasopressin/ADH och oxytocin som transporteras till neurohypofysen och avges därifrån ut i blodet.

torsdag, augusti 27, 2020

Tredje ögat – Tallkottskörteln – Epifysen

Det tredje ögat är ett mystiskt och esoteriskt begrepp som kan referera till ajna chakra inom olika andliga traditioner från öst och väst. Det sägs även vara en dörr som leder in till inre världar och stadier av högre medvetande. Inom New Age kan tredje ögat symbolisera upplysning eller framkallandet av mentala bilder med djupt spirituella eller psykologiska innebörder.

Det tredje ögat associeras ofta med uppenbarelser, klärvoajans (vilket även innefattar förmågan att observera chakra och auror), spådom och utomkroppsliga upplevelser. En person som anses ha utvecklat en förmåga att använda sitt tredje öga kallas ibland synsk. Det tredje ögat associeras även med den egyptiske guden Horus öga där tallkottkörteln avbildas. Tallkottkörteln som på rent biologiska premisser mycket liknar det vanliga ögats anatomi, men som istället för synen, styr de mer drömliknande upplevelsefunktionerna samt även reglerar sömn och dygnsrytm. Att via droger manipulera tallkottkörteln har därför blivit en metod för att framkalla och förstärka det som nämns ovan, såsom t.ex. drömliknande- eller utomkroppsliga upplevelser.

Tallkottkörteln

Tallkottkörteln – Pineal gland – epifysen (latin Corpus pineale) är en endokrin körtel i hjärnan. Epifysen producerar hormonet melatonin, som bidrar till regleringen av kroppens dygnsrytm. Den konformade körteln väger 0,1–0,2 gram och utgör en utväxt stor som en halv ärta på mellanhjärnans tak, belägen vid bakre kanten av tredje ventrikeln.

Baserat på obduktionsfynd tror man att 21–40 procent av befolkningen under sin livstid utvecklar en cysta i anslutning till körteln, en så kallad pinealecysta. Denna är godartad och alltså inte relaterad till cancer. De upptäcks oftast av en slump i samband med röntgenundersökningar och betraktas i de flesta fall som bifynd. Orsaken till cystan är inte klarlagd.

De flesta cystor är små (80% är mindre än 10 mm) och ger inte upphov till symtom. Större cystor (över 15 mm) kan ibland orsaka tryck på omgivande vävnad eller störa cirkulationen av cerebrospinalvätska (hydrocephalus). Symptom på detta är i första hand huvudvärk, men även yrsel, synpåverkan, ljuskänslighet, sömnstörningar finns beskrivna. I sådana fall kan kirurgisk operation bli nödvändig för att hämma cystans tillväxt. Av denna anledning görs ofta en upprepad CT eller MRI för att avgöra om cystan växer eller inte.


söndag, december 06, 2009

Sjätte sinnet - Intuition eller balans

De fem sinnena av Hans Makart


Den traditionella definitionen på ett sinne, är att receptorer/sensorer tar emot impulser som blir upplevelser via en process som kallas hard problem eftersom vetenskapen inte kan förklara gränssnittets metoder.

Syn - Hörsel - Smak - Känsel - Lukt

Dessa sinnens receptorer är väldefinierade, medan alla förslag till ett sjätte sinne uppvisar brister i det avseendet.

Många medvetandeforskare anser att intuitionen är vårt sjätte sinne och i vissa fall uppfylls kravet på receptor - gränssnitt - upplevelse.

När vi reagerar intuitivt för att undvika en olycka, kan det bygga på minnet av ett eller flera av de fem sinnenas tidigare reaktioner i en liknande situation.

Några forskare anser att balansen är det sjätte sinnet och vi talar ju faktiskt om balanssinnet. Receptorerna kan i fallet balans, vara syn, hörsel och någon sorts tyngdpunktsindikator i samverkan.

Jag tycker att vi ska nöja oss med de fem sinnena.

tisdag, november 25, 2008

Kan intelligens mätas med måttenheten IQ?





Föreningen Mensa erbjuder medlemskap till den som klarar deras intelligenstest. Illustrerad Vetenskap eller illusionerad Vetenskap, som jag kallar den efter att ha tagit en provprenumeration på två nummer, erbjuder också ett IQ-test, men inget medlemskap.

Många IQ-test finner du här.

Klicka på rubriken och försök att lista ut innebörden i begreppet intelligens.

På senare tid har många hävdat att EQ är ett bättre mått på duglighet än IQ

Själv känner jag mig bara dum efter att ha läst Wikis definitioner och försökt komma på vilket mått som är bäst.

I nästan samtliga ledarskapskurser som jag pinade mig genom på 70-talet, återkom den här figuren under varje brainstorm.

Först sätter man upp ett mål. Sedan får alla ropa fritt ut förslag till redskap för att nå målet. Ledaren skriver ned allt på en tavla. När ingen kommer på något mer, delar man upp förslagen i till exempel kategorierna kan, vill kunna och kan skaffa.

De tre huvudområdena representeras av vardera en stor cirkel. De tre cirklarna skär varandra så att det blir ett fält i mitten där man kan föra in ett slutresultat av hjärnornas kamp.

I stället för cirklarna kan man rita ett flödesschema vilket ser mera avancerat ut.

Jag tror inte att man blir intelligentare av att lösa Kakuro och Sudoku, men jag vet att det är rena smörjmedlet för ganglier och synapser.

Om det gnisslar i början av kakurolösandet finns det extra smörjmedel här i form av hjälptabeller.

tisdag, maj 08, 2007

Träna gärna din Hjärna!

Klicka på rubriken och läs mera om hjärnan. Klicka här och läs om hur din hjärna stressas.

Citat:

"De kan konstatera att hjärnans storlek inte har förändrats på 40 000 år. Genetiskt sätt är vi i stort sett identiska med cromagnonmänniskorna."

"vi snart är redo för att träna ”våra mentala muskler”. Personer med högre arbetsminnes­kapacitet är nämligen bättre både på problemlösning och på att ignorera distraktion. I framtiden blir kraven på en vältränad hjärna lika självklar som dagens krav på en vältränad kropp, gissar han."

"– Vi ska försöka hitta en optimal balans, sträva efter flow. Det gör man genom att förstå sig själv och sin omgivning. Vilka kognitiva krav ställer den? Vad är för mycket eller för lite för mig? Det är som att komponera en måltid."

Det florerar skrönor om hur vi endast använder 30% av vår hjärnkapacitet och alltså har en enorm utvecklingspotential. Så är det naturligtvis inte! Vi använder 100% av hjärnans tillgängliga resurser och den största delen går till att administrera det autonoma nervsystemet som ser till att hjärnans impulser och kroppens muskler samordnar sina aktiviteter.

Erbjud din hjärna minst en timme Kakuro och Sudoku per dag! Det är rena hälsokosten för en stressad hjärna. Ja tack gärna, säger den då och arbetsminnet uppgraderas till Homo Sapiens 3.14